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THE EFFECTS ON STRESS SINGULARITIES OF INTRODUCING COHESIVE
STRESS-SEPARATION LAWS AS BOUNDARY CONDITIONS FOR ELASTIC
PLATES IN EXTENSION

Introduction

The stress fields in angular elastic plates in extension were first treated by Knein
[1], and subsequently systematically identified by Williams [2]. These studies reveal the
possibility of elastic stress singularities at the vertex of the wedge. For example, a stress-
free wedge of angle 2x realizes a model of a crack having stresses which behave as the
inverse of the square root of the distance from the crack tip. Such fields are at variance
with the assumptions underlying the theory from which they came. Consequently, care
needs to be exercised in interpreting them. Even with care, resulting inferences with
respect to structural integrity are not always as reliable as desired in practice (see, for
example, [3]). Accordingly it is of some interest to explore alternative models which are
free of these nonphysical singular stresses. This report considers a means to this end,
namely the introduction of cohesive stress-separation laws.

Barenblatt was first to introduce cohesive stress-separation laws to rid cracks of their
stress singularities; an extensive account of his work is given in [4]. Essentially his
approach cancels the opening singularity produced by loading remote from the crack
with the closing singularity produced by cohesive stresses on the crack flanks near the
crack tip.

To explain further, we consider the example of a central crack in an infinite
elastic plate under far-field uniform tension (Fig. 1). The crack has length 2a, the
applied tension magnitude 6,. To describe the configuration, we use rectangular
Cartesian coordinates x, y, with origin O at the rightmost crack tip. Then the normal

definition of the stress intensity factor, Ky, associated with this crack tip, has

Ki= lim V2rx oy | , &)
x->0% y=0
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Fig. 1. Crack with local cohesive zone (after Barenblatt [4])
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where 6 is the normal stress component in the y-direction. Accordingly, Kj is the

coefficient of the aforementioned inverse-square-root singularity in the crack-tip stress
field. Its values for the central crack configuration of Fig. 1 are as follows. For the

applied stress 6, we have (see, e.g., Tada, Paris and Irwin [5], p.5.1)
KI = 0'0'\/5 . (2)

For the cohesive stress, 6. =6.(§) where & =-x, we have (see, e.g., Tada et al,, [5], p

5.11)

26c(§)d§
\/7 | ot (2a ©)

where Aa is the extent of the zones in which the cohesive stresses act. Thus by ensuring
the magnitudes of the stress intensity factors in (2), (3) are equal, the advertised
cancellation takes place and effects a singularity-free crack.

In addition to introducing cohesive stresses, Barenblatt made some assumptions
regarding their distribution. First, he assumes that the extent of the cohesive zones is

small ([4], p. 78), i.e., Aa/a<<1 Under this assumption, the stress intensity factor of

(3) is given by

)

Aa
A
T

(4)




as Aa/a-—>0, wherein O is the large order O symbol. Barenblatt terms K of (4) the
modulus of cohesion. His second assumption then has, in effect, that the maximum
possible value of K does not depend upon the applied loading, 6, and is always the
same for a given material ([4], p. 79). Thus when this maximum is attained and fracture
is about to occur, provided the configuration is maintained singularity free, the stress
intensity factor due to o, has also attained a critical value. Essentially, then, the stress
intensity factor due to applied loading becomes the key parameter controlling fracture,
the same fracture criterion as used in fracture mechanics when singularities are present.
Goodier [6] and Rice [7] also provide arguments that, as a result of his assumptions,
Barenblatt’s approach reduces to the same as for cracks with singularities present.
Hence, while Barenblatt does indeed cancel singularities for cracks by introducing the
concept of cohesive crack-flank stresses, the manner in which he does so leads to an
approach which is equivalent to that used when singularities are present as far as
fracture goes. As a consequence, this cancellation of singular behavior is perhaps not
that significant from a practical viewpoint.

Here, in contrast, we do not assume the cohesive zone to be necessarily small. In
fact, we let it extend ahead of the crack tip, as indicated in the sketch of Fig. 2. This
extension changes the boundary conditions ahead of the crack. Since boundary
conditions play a critical role in determining the possible singular behavior present, this
change raises the question, “what type of singularity can the crack now have?” We seek
to investigate this question herein, both for the cracked plate in particular, and for the
angular plate in general.

We begin in Section 1 with a formal problem statement. Next, in Section 2, we
develop boundary conditions equivalent to cohésive stress-separation laws which, in
turn, lead to the eigenvalue equations given in Section 3. We then examine some
associated eigenfunctions for special cases in Section 4, and close by offering some

concluding remarks.




Fig. 2. Close 'up of crack tip with cohesive stresses both ahead and in back of the tip
(the original tip O takes up two positions, O* and O)



1. Formulation

Here we specify, in some detail, the class of angular elastic plate configurations
to be examined for possible stress singularities.

To facilitate the treatment of the angular plate geometry (Fig. 3), we use polar
coordinates r, 8, sharing the same origin, O, as their rectangular counterparts x,y, and

related to them as in:

X=rcosB, y=rsin6, )]

for 0<r<e, 0<6<2x. Then the region of interest, R, is given by:

R={(r,0)0<r<e, 0<6<0} (6)

where ¢ is the vertex angle of the angular plate. With these geometric preliminaries in
place, we can formulate the class of problems of concern as follows.
In general, we seek the two-dimensional, elastic, stress components Grr09r1§e/

and associated displacements u,,uq, satisfying the following: the stress equations of

equilibrium in the absence of body forces,

)
l 80'9 aTre + ztre -
r d0 or r

on R; the stress-displacement relations for a homogeneous and isotropic, linear elastic

plate, in a state of plane strain,




Elastic plate,
R

N\

Fig. 3. Angular elastic plate and coordinates
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2u du 1dug  u
e o ' r =% U
Or 1—2\;[( V%5 +V(r ® " r )]
2u 1dug  u ) du
= 1- ot - S0 T’ o r
e 1—2\'[( v)(r 20 * r )Y or :I' ®)

r 00 or r

- u[l?&+ 3_%__113],

on R, for 0<r<e, wherein [ is the shear modulus, v Poisson’s ratiot ; and cohesive

stress boundary conditions on 8 =0 together with any of the admissible set of boundary

conditions given in Table 1 on 8 =¢ for 0<r<e. Specifically, we are interested in the

local behavior of the fields complying with the foregoing in the vicinity of the wedge -

vertex, O.

Table 1. Homogeneous boundary conditions for plate edges
No. Conditions Description
(1) g =kug, 7T,9=k'u, Cohesive stress-separation laws
(if) 6g=0, T=0 - Stress free
(iii) u, =0, ug=0 Clamped/rigid adhesive contact
(iv) ug =0, ’C?'e =0 Symmetry /rigid lubricated contact
(v) u. =0, 6g=0 ' Antisymmetry

T For plane stress, replace v by v/ (1+v).
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Several comments are appropriate at this point. We begin this commentary by
considering the general nature of the preceding formulation, then focus the discussion
on each of the boundary conditions in Table 1 in turn.

First with respect to the selection of plane strain (or plane stress) field equations,
we remark that results found can be expected to apply to axisymmetric configurations,
and even three-dimensional ones provided the geometry varies smoothly enough in the
out-of-plane direction (Aksentian [8]). Second re the choice of homogeneous boundary
conditions, we observe that typically singular behavior is controlled by these conditions
rather than their inhomogeneous counterparts.t Third regarding the absence of
regularity requirements at infinity on the open wedge R, we note that this renders
fields complying with our formulation nonunique. Since the principal attribute of these
fields is the potential characterization of all possible responses at the wedge vertex, such
a lack of uniqueness is to be desired rather than regulated against.

Turning to the specific boundary conditions in Table 1, the first set is that
associated with cohesive stresses. Thus k,k’ in (i) are stiffnesses associated with relative
displacements between material on the two sides of the ray on which the condition is
applied. These “springs” need not be linear; in fact, typically k = k(ug), k’ =k’(u,).
The second and third conditions are the traditional “free” and “clamped” cases treated
by Williams [2]; the latter of these two also admits to interpretation as the homogeneous
complement to indentation by a rigid punch with complete adhesion. These three sets
of boundary conditions realize three problems within the class under consideration: (i)
- (i), (i) - (i), and (i) - (iii). In the instance wherein the cohesive stress conditions are
taken on both faces, it is useful to distinguish between symmetric and antisymmetric
response. The next two sets of boundary conditions, (iv) and (v), enable one to do this.

The symmetry conditions can also be interpreted as the homogeneous complement to

¥ Usually there are no singularities which stem from the inhomogeneous part of physically sensible
boundary conditions. However, jump discontinuities from one wedge face to the otherin 7,4 or ug /r
can produce Inr stress singularities.
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indentation by a perfectly smooth, or lubricated, rigid punch. In all, therefore, the
independent problems within the class of present concern are: (i) - (ii), (i) - (iii), (i) - (iv),

and (i) - (v).

2. Equivalent boundary conditions for cohesive stress-separation laws

In this section, we consider the role of cohesive stress-separation laws as
boundary conditions to see the degree to which it can be reduced to that of other, more
traditional, boundary conditions. In this way we hope to reduce the analysis of
cohesive stress boundary conditions by taking advantage of known asymptotic
solutions.

A sketch of a normal cohesive stress versus separation law stemming from
attraction/repulsion between atoms/molecules is shown in Fig. 4. Therein s is the
separation, Se its equilibrium value. As the slope varies, we can expect k of (i), Table 1,
to be a function of separation. However, initially as loading commences, a constant
stiffness is a fair approximation (as indicated by the dashed line in Fig. 4). Thus we take
k to be constant henceforth. For similar reasons, we can also approximate k” as being
constant.

To simplify matters further, we temporarily take k’=0 and focus on the normal

cohesive stress. That is, we consider
0'9=kU.e, Tro =0 at 9=0, (9)

for 0<r<eo, where k is now constant. This simplification is actually an appropriate
one if cohesive stresses act on a line of symmetry, because then there is no relative u,
and 1,4 =0.. Notice, too, that on such a line uy need not be zero if cohesive stresses act

(e.g., Fig. 2), in contrast to the symmetry conditions in (iv), Table 1.




Fig. 4. Schematic of a normal cohesive stress-separation law
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Prior to actually complying with (9), we need to construct stress and
displacement fields satisfying the governing equations, (7), (8). Following Knein [1],

Williams [2], we use the Airy stress function, X, to this end. That is, we take

_19% 1y
G’“rzaeﬁrar’
0%y
=—3, 10
Cg arz ( )
. -_i(_l_ﬁzg)
T ar\roe )

throughout R, with
Vi =0, (11)

on R, V* being the biharmonic operator. While X is biharmonic, it can be obtained as

a combination of harmonic functions, ¥1 and V2, via
X=vy+ 1'2\If2- (12)

The key in choosing ¥1 and V2 is to ensure that the resulting X has four linearly
independent functions of & which share a common r-dependence: then when boundary
conditions are ultimately applied on 6 =0, ¢, we will have available four arbitrary
coefficients, or constants, to satisfy the four conditions involved. With this in mind, we

start by selecting the classical separable solution for V1,

v1 =r"*"[Acos(A+1)8+Bsin(A+1)9)]. (13)
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In (13), A and B are two of the required constants, and the exponent A+1 is chosen
merely for subsequent convenience in expressing eigenvalue equations (after Williams
[2]). Next, to obtain two more functions of 8 which share r**! as a coefficient, we

exchange A +1 for A-1in (13) and take

3 =1*"[C cos(A ~1)8+ D sin(A - 1)9], (14)

where C and D are two further constants. Combining y; and v, in accordance with
(12) then yields the desired X with a total of four constants with the same r™*!
multiplier. The attendant stresses can be derived directly from the Airy stress function
relations (10). The corresponding displacements can be similarly determined with the
aid of a further auxiliary harmonic function (see Williams [2] for details), or simply by
integrating the stress-displacement relations (8). The resulting fields have, for the

stresses,
o, =AM\ - 3)(acos(A —1)8+b sin(A —1)8) + ¢ cos(A+1)0 +d sin(A +1)8],
g = Ar*'[(A +1)(a cos(A —1)0+ b sin(A — 1)8) + ¢ cos(A +1)0+d sin(A+1)0],  (15)
Tg = A (A — 1)(%1 sin(A —1)6 — b cos(A —1)6) + ¢ sin(A +1)8 — d cos(A + 1)8],
inwhich a, b, ¢, d are constants, and, for the displacements,

A
u, = ziu.[(x ~%)(a cos(A —1)8+b sin(A — 1)8) + ¢ cos(A + )8+ d sin(A +1)8],

(16)
A
g = ;E[(x +K)(a sin(A —1)8 — b cos(A ~ 1)8) + ¢ sin(A +1)8 — d cos(A +1)6],
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wherein k=3 -4v.t
Now returning to the satisfaction of the cohesive stress-separation law, the

second of (9) modifies 6g,u4 of (15), (16) so that

66 = Ar* 1[(A+1)(a cos(A —1)8 + b sin(A —1)8) + ¢ cos(A +1)8 — (A — 1)b sin(A+1)8],

(17)
A
ug = %E[(x +x)(a sin(A — 1)@ — b cos(A —1)8) + ¢ sin(A + 1)8 + (A — 1)b cos(A +1)8].

Substituting (17) into the remaining condition in (9) it becomes apparent that the 64 and
ug of (17) cannot interact because of their different powers of r. At first thought, then, it
would appear that 6 and ug must both be independently zero in order to satisfy the
first of (9), since this is a homogeneous condition. Unfortunately, such a double
requirement can seldom be complied with since, in effect, it realizes a total of five
boundary conditions and we still have only four constants to meet them with.
Fortunately, this overly restrictive situation can be alleviated as follows. We do indeed
let the quantity with the lower power of r be independently zero. Thus we let 64 of (17)
by itself be zero. If we then increase A by one so that A — A +1, the associated stress
can interact with ug of (17). However, the A+1 field has a ug leftover; this
displacement in turn must interact with a 69 for A—>A+2. And so on. That is,

replacing A by A +n, the first of (9) requires:

Gg | =0,
n=0
(18)

Ggl = kusl ’ n=1,2,..
n n-1

T For plane stress, x = (3—v) / (1+ V).
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Straightforward manipulation then yields the following series expansions for 6, ug:

Cg = 3 phin-l a, -£,(9),
n=0

(19)

ug= T b, -£,(6),
n=0

where the vectors ap, by, f, (6) are given by

a, =(A+n)(A+n+1a,, A+n+1b,, kb 1 ~(A+n+1a,, ~(A+n-1)b,),

b, =2—1u-(-(x+n+x)bn,(x+n+x)an, (A+n-1by, Kby g ~(A+n+Day),  (20)

£,(8) =(cos(A +n—1)8, sin(A +n —1)8, cos(A +n +1)8, sin(A +n + 1)8),

with

. = ~k(x+1)

" 2u(h+n)’ @1)

and the understanding that b.;=0 while the other ap, by, are simply the constants for A
being A+n,n=0,1,2,...

Substituting the series expansions of (19) into whatever are the outstanding
boundary conditions that hold on the other wedge faceat 6=¢ results in a series of
2 x 2 systems of equations in the constants an, by (n =0, 1, 2,...). The first of these is
homogeneous. It requires the value of A be an eigenvalue of the problem associated with
n = 0, and relates bg to agp. Subsequent sy_éter‘ns are inhomogeneous and serve to
determine ap, by (n=1, 2,...).1 ‘

For n =0, (9) reduces to (see (18))

T This is so provided the determinants of the attendant coefficient matrices are not zero - we demonstrate
how to handle such systems in Section 4.
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Og =T = 0. (22)

It follows, therefore, that the cohesive stress-separation conditions (9) have an identical
influence on the eigenvalues of one of our wedge problems as do the stress-free
conditions. Moreover, this can similarly be shown to be true for the dual of (9), namely
k =0, k’#0. Together, then, these results establish that the boundary conditions for
cohesive stress-separation laws ((i) of Table 1) are completely equivalent to the stress-free
boundary conditions ((ii) of Table 1) in so far as the eigenvalues of any of our admissible
wedge problems are concerned. This means, in particular, that any singular nature
present in a wedge with cohesive stress boundary conditions is the same as that present

with these conditions exchanged for stress-free boundary conditions.

3. Eigenvalue equations

Here we exploit the equivalence of cohesive stress boundary conditions with
stress-free conditions to establish a complete set of eigenvalue equations for cohesive
stress boundary conditions in combination with any of the other boundary conditions in
Table 1. We then examine these equations for possible singular behavior.

As mentioned in Section 2, when cohesive stress boundary conditions hold on
8 =0, the further boundary conditions on 8 =¢ generate a homogeneous 2 x 2 set of
linear algebraic equations in ag, bg. For a nontrivial solution, the coefficient matrix of
this set must be singular. Setting the determinant to zero then provides an equation in
A such that this is so, i.e., the eigenvalue equation.

Given the equivalence with respect to eigenvalue equation generation of cohesive
stress boundary conditions ((i) of Table 1) with stress-free conditions ((ii) of Table 1), the
following distinct pairs of boundary conditions for the angular wedge may be

identified. First we have these equivalent conditions paired with themselves:

(i) or (ii) - (i) or (ii). (23)
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Asymptotic character found for this pairing is the same as results from both its

symmetric plus its antisymmetric contributors:

(i) or (ii) - (iv) & (V). (24)

Completing possible pairings with (i)/(ii), we have the outstanding set of boundary

conditions of Table I, namely

(i) or (ii) - (ii). (25)

The three eigenvalue equations resulting from (24), (25) represent a complete set of all
possible combinations of the boundary conditions in Table 1 with cohesive stress
boundary conditions. These equations are set out in Table 2 (p. 18).

The eigenvalue equation for (23) is given in Williams [2]; separating it into
symmetric and antisymmetric parts yields the first two equations of Table 2. In these
equations, ¢ continues as the entire vertex angle so that (iv), (v) have actually been
applied on 6=¢/2, the wedge bisector. The eigenvalue equation for (25) for plane
stress is given in Williams [2] as well; adaptation to the case of plane strain for inclusion

in Table 2 is immediate.
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Table 2. Eigenvalue equations with cohesive stress boundary conditions

No. Equation Applicable boundary conditions,
associated vertex angle

1 sinA¢ = —Asind @)-(@Gv), 6/2; (@) - (@) or (i), ¢
I sinA¢ =Asin¢ (i) -(v), 6/2; (i) - () or (ii), ¢
m (x +1)? = 4(A?sin? ¢ + k sin? A) @) - (iii), ¢

In checking for roots of the eigenvalue equations, we are primarily concerned
with values of A that are less than one since these can lead to singularities (see (15) or
(19)). For A =1, it is possible to have a logarithmic singularity, so we include this value
too (see Dempsey and Sinclair [9] for the full necessary conditions for this possibility).
We restrict the search to A >0 so that any such stress singularities are guaranteed to be
integrable, viz., to have finite forces. On occasion, eigenvalues can be complex: then the
preceding restrictions apply to the real part. Thus, in sum, we confine attention to

eigenvalues in the range
0O<Re A<l (26)

Eigenvalues complying with (26) for the three eigenvaIue equations of Table 2 are
presented in Fig. 5 as a function of wedge vertex angle.

The curves in Fig. 5 display values of the singularity exponent, 1— A, rather than
the eigenvalue itself, A. The larger the value of this exponent, the more singular are

possible vertex stresses. This is because
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c=0(1/r"*)as r—0, (27)

wherein © is any stress component, 6,,0g,0r T, (see (15)). Apparent in Fig. 5, is that
the symmetric response, I of Table 2, is uniformly more singular than the antisymmetric,
II, for ¢ <2r. Hence I is the curve shown in Williams [2] for the dominant singular
behavior under free-free conditions. Here it is also the dominant singular curve for
cohesive stress-separation conditions in concert with either themselves or stress-free
conditions. For cohesive stress-separation conditions together with clamped conditions,
II1, the curve for v=1/4 closely follows that given in Williams [2] for clamped-free
conditions (the v used in [2] for plane stress corresponds to v= 3/13 here for plane
strain). The additional case of v=1/2 is included for these conditions since it is more
singular. For III, for both values of v, there exist other curves which represent less
singular response than that shown in Fig. 5 for a given wedge angle ¢, yet nonetheless
potentially singular stresses.

As well as giving the strength of possible stress singularities, the eigenvalue
equations determine when singular behavior is no longer possible. Identifying
boundary conditions as in Table 1, these nonsingular ranges of vertex angles are as

follows. For (i) with (i) or (ii) under symmetric loading, i.e., fromI,

0<¢<m (28)
For (i) with (i) or (ii) under antisymmetric loading, i.e., from II,

0<0<¢*, tan¢*=0¢*(0<0o*<2m).’ . (29)

From Abramowitz and Stegun [10], p. 224, ¢* =257.45°. For (i) with (iii), i.e., from III,
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0<¢<sinlvk+1/2, (30)

with the understanding that the inverse sine takes its principal value. For v =1/4,1/2,
K=3-4v takes on the values 2, 1, and (30) gives 6<m/3,m/4, respectively, as shown
in Fig. 5.

Given the equivalence of boundary conditions for cohesive stress-separation laws
with stress-free conditions, the above ranges are the same as for free-free and clamped-
free wedges. How, then, does the use of cohesive stress boundary conditions lower the
number of instances of singular behavior? There are two ways. For free-free wedges,
one can introduce cohesive stress conditions on an inferior ray within a given wedge, a
ray upon which it is reasonable to consider the possibility of failure: thus the effective
wedge angle is reduced and more likely to fall within the nonsingular ranges of (28),
(29). For clamped-free wedges, one may be able to replace the clamped conditions with
cohesive stress conditions: hence the range of nonsingular wedge angles goes from (30)

to (28) or (29) and nonsingular response is more likely. We demonstrate these two ways

in the next section.

4. Eigenfunctions for some special cases

Here we consider the effects of introducing cohesive stress-separation laws for
some specific local features. The particular configurations examined are: a crack tip
under symmetric (mode I) loading (Fig. 6a), a reentrant corner subjected to symmetric
loading (Fig. 6b), an epoxy-steel butt joint under tension (Fig. 6c), and a junction of three
phases in a titanium aluminide microstructure (Fig. 6d). In what follows, we treat each
of these instances in turn, and compare local stresses with and without cohesive laws.

For the perfectly sharp crack under mode I loading, symmetry enables attention

to be confined to the upper half-plane. For this half-plane, classical boundary
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conditions take stress-free conditions on the crack flank, symmetry conditions ahead of

the crack. That is, for the coordinate system of Fig. 6a,

Cg=T,=0 at O=m,

(31)

U.e'—-—o, TI‘9=0 at e=0,

for 0<r<eo. Using the equivalence with respect to eigenvalue equations of stress-free
boundary conditions with cohesive, the associated eigenvalue equation may be taken

from Table 2 as Iwith ¢ =2x, and is :
sin 27A = 0. (32)

Consequently the dominant singularity admitted (recall (26)) has A=1/2 and

6=0(1/+r) as r—0, (33)

wherein ¢ continues as any stress component.t This is the classical, inverse-square-
root, stress singularity of present day fracture mechanics.

With Barenblatt’s approach [4], cohesive stresses are introduced on the crack
flank while symmetry conditions are maintained ahead of the crack. Given symmetry,

these boundary conditions are

Ge=—2kUQ, "Cre=0 at 9=1t,

(34)

ug=0, 1=0 at 6=0,

¥ Details of these local fields are well known and may be found, for example, in Rice [7] at p. 216.
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for 0<r<es. The minus sign in (34) is simply an outcome of applying the cohesive
conditions on 0 =7, and the 2 reflects the total separation of the crack faces under
symmetric loading. In the light of the equivalence of the cohesive conditions in (34) to
the stress-free conditions in (31), we have the same eigenvalue equation for this
configuration, to wit (32), and same singular character, to wit (33). Now, though, there
are two instigators of singular stress fields: one being far-field loading, the other being
the cohesive stresses on the crack flank. Since these share the same singular character,
they can be adjusted to cancel one another, as in Barenblatt [4].

Here, instead, we introduce cohesive laws both behind and ahead of the crack tip

(as in Fig. 2). Thatis, our local boundary conditions for symmetric loading are
o] =-—2ku9, Tro =0 at 6=TC,
(35)

0'9-——21(119, Tr9=0 at 9'—'—'0,

for 0 <r <e. The eigenvalue equation for these conditions is still I of Table 2, but now

with ¢ ==, i.e,,

sin Am = 0. (36)

This is an example of the reduction in effective wedge angle mentioned at the close of

Section 3. Eigenvalues with integrable stresses as a result become

A=0,1,2,... (37)

Norne of the associated stress fields are singular (the A =0 field corresponds to a rigid

body displacement). However, we do have the situation mentioned earlier, namely that
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successive coefficient matrices for assembling eigenfunction series expansions are
themselves singular. Fortunately, by combining rigid body displacement fields with
simple polynomial solutions for the stresses, we can construct eigenfunctions which are
not series. These are most succinctly expressed in rectangular coordinates (Fig. 6a), and

take the following forms: for the stresses,

2
X X 3
=2k - - O ’
Oy [v0+v1a+v2(a) +O(x )]

(38)
8y
= —-2k .}_, X_ —— +O ,
ox V2 a[a +(1+K)ka] )
as x— 0,y /a<<1, while for the displacements
V= [VO +vy —)5][1 + (d+xky K)ky]
a 4
+—Z%[x" ey B 4 3y )] +0(xy2)+0(:),
(39)

=y BRkx v

u ym " I:y + gl-:I((B - lc)x2 +(1+ K)y2 )]

—2V—§"{y + %(3(3 —x)x% +(1+ K)yz):| +0(y®)+O(x%y),
a

as x—=0,y/a<<1l In (38), (39), 2a remains the crack length, v,, v, v, are arbitrary
displacements in the y-direction, and the shear stress associated with these coefficients

is everywhere zero. This is not the case in general, however. For example, the
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companion shear stress for 6, =kvz(x/ a)’ has terms of ord (v5y®) and ord (v3y2) as

x — 0. t The above fields may be verified directly by substituting them into the stress
equations of equilibrium, the stress-displacement relations, and the boundary

conditions (35) on converting to rectangular coordinates; when this is done, the fields in

(38), (39), together with Ty =0, are indeed found to satisfy all these requirements.
They can also be augmented by the fields associated with 6, = constant, ¢, =1,, =0.
With or without these last, clearly the fields in (38), (39) are not singular.

For the closely related configuration of a 90° reentrant corner subjected to
symmetric loading (Fig. 6b), classical boundary conditions for the upper half of the plate
have stress-free conditions on the inclined face together with symmetry conditions

ahead of the corner. Thatis

Cg=Tg=0 at 0=3m/4,

(40)
Ug =O, Tro =0 at 9=0,
for 0 <r <. Thus the eigenvalue equation is (from Table 2 as I with ¢ =3n / 2),
dn%?=. (41)

Solving (41) numerically for A within the range 0-1 yields A =0.544. Hence singular

stresses of order

o=0(r"%%) as r—0 (42)

T Herein the ord notation implies that, if f(x)= ord(ax*) as x — 0, aand o being independent of x, then

in fact f(x) = kax® as x — 0 with the multiplicative constant k not being zero. This is in contrast to the O
notation which admits the possibility of k being zero.
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are possible in the corner. Thus the singular character here is only a little weaker than
that for the crack.
Now introducing cohesive laws between the upper and lower halves of the plate

with a reentrant corner, the boundary conditions become:

Gog =T =71<—2—(r+ur—U.e) at 9=31t/4,

(43)

0'9=2ku9, Tre=0 at 6=0,

for 0 <r<eo. These conditions take the vertical traction on the corner faces to be k times
the total separation of the faces due to their angle and to any vertical displacement.
They also take the horizontal traction to be zero since there is no relative horizontal
displacement between the upper and lower halves of the plate because of symmetry.
From Table 2, the eigenvalue equations for these conditions are I and II with 0=3n/4,
viz.,

sin%=i X (44)

S8

Again the wedge angle is effectively reduced. Real eigenvalues with integrable stresses

then are
A=0,1, (45)
the first of these corresponding to a rigid body displaéement field. Complex

eigenvalues are also possible. These occur in pairs as complex conjugates. The complex

pair with the smallest positive real part may be determined numerically and is
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A=E+in, £=1885 n=20.361 (46)

The next complex root has § >3, and further roots have still greater real parts. Thus
none of the eigenvalues of (44) lead to singular stress fields. The series expansions for
the associated eigenfunctions can be constructed in the manner outlined in Section 2.

After some algebra, this yields: for the stresses,
o, = 2kv,sin?6

-——lir—[(1+v—(,’ —-Xl)cose + (3 +3-V—9+ —Y-l—)cosse
2 a” a a’ a

+2(1+-Ya—?—)(sin6+sin38)]+ord(r2)

' A-1
—{:? E}{G) [(A — 1)(A = 3)cos(h — 1)8 — (A2 = 1)cos(A +1)8
2

+(V2=22 +1)((A - 3)sin(A - )0 — (A — )sin(A + 1)0)] + ord(r*)},
Go = 2kv( cos? 6

—E[3(1+X%—ﬁ)cose—(3+3X9+Vﬁ)c0336
2 a a a a
+2(1 + %)(3 sin® —sin 39)] +ord(r?)
47)
JaRe rH(xz 1)(cos(A —1)8 — cos(h+1)8
vyIm (;) [ - )(cps( )8 — cos( )0)

+(«/ 22+ 1)(@ +)sin(h —1)8— (A —1)sin(h + 1)9)] + ord(r’”)},
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Trg = 2kv( sin6 cos0

al

—5’-[(“1‘1—ﬂ)sine—(3+339—+ﬁ)sinse
2 a a’ a

+2(1 + %(,’-)(cos 36 —cos 9)] +ord(r?)

A-1
+{“:22 II:}{G) (A= DA ~Dsin(h — 18— (A + I)sin(A +1)8

+(ﬂ + 1)((:05(7» +1)0 —cos(A - 1)9)] +ord(r k)},

as r—0,0<0<3n /4, while for the displacements

u, =vgysinb+ a Y0__fe-1- 2¢0s26]

+x)a’

+ord(r?) +ord(v,r*) + ord(vr*),

(48)

Ug =VycosO+ r[ 2Vo sin26+ ﬂ]
(1+x)a’ a

+ord(r?) +ord(v,r*) + ord(vsr*),

as 1—>0,0<6<3n/4. In (47), (48), a is now the depth of the reentrant corner, a’ is a
further normalizing length defined by a’ =4y / k(1+ ), Vp,Vq1,V; continue as arbitrary
displacements supplemented by v, and A satisfies (44) with the minus sign with its :
actual value being either of the complex roots given in (46). These fields may be
verified directly by substitution into the governing field equations, namely (7), (8)

together with stress compatibility, V*(c, +0g)=0, for the higher order stress terms,
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and the boundary conditions (43). When this check is performed, the fields in (47), (48)
are indeed found to comply with all these requirements. In the interests of brevity, we
terminate explicit expressions for series terms in these fields at ord (r) and simply give
the orders of the next terms: other than the somewhat lengthy algebra involved, there
would not appear to be any impediment to determining these higher order terms
explicitly. As before, clearly the fields in (47), (48) are not singular.

Turning to the epoxy-steel interface where it meets the outside free surface of the
composite tensile specimen (Fig. 6¢), in view of the relative rigidity of steel compared to
epoxy, classical boundary conditions for the elastic response of the epoxy are clamped-

free:

u, =ug=0 at 6=m/2,
(49)

Cg = Tro =0 at 06=0,

for 0<r<eo. If the composite specimen is thick in the out-of-plane direction in Fig. 6c,
the appropriate field equations are those of plane strain, i.e., (7), (8). Even if the
specimen is the normal cylindrical one used in practice, these field equations are still
appropriate for examining local behavior (see Aksentian [8]). Hence, given the
equivalence of stress-free conditions with cohesive, the pertinent eigenvalue equation

can be drawn from Table 2 as Il with ¢ =7 /2. Thatis,

(x+1)? = 4(72 +xsin? -7522‘-) ‘ (50)

For epoxy, a representative value of Poisson’s ratio is 3 /8 corresponding to x=3/2.
Then solving (50) numerically for A within the range 0-1 furnishes A =2/3, and the

dominant singularity possible has
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c=0"Y 3) asr—0. (51

This is a weaker singularity than for either of the previous two configurations, but quite

a strong one nonetheless.

Now instead we introduce a cohesive law between the epoxy and relatively rigid

steel. The resulting boundary conditions are taken to be:

Cg=-kug, u,=0 at 0=x/2,

(52)

Cg =T.g =0 at 9=0,

for 0 <r < . In (52), we have only incorporated a cohesive stress-separation law
normal to the interface and not admitted the possibility of relative tangential
displacements between the epoxy and the steel. This choice is arguably the simplest
model; however, one could quite reasonably also introduce a cohesive law for
tangential displacements. Given the equivalence of the very first of (52) with the
condition o4 =0, these conditions in their entirety realize the same boundary conditions
as for a complete half-plane under antisymmetric loading. From Table 2, the eigenvalue

equation is thus I with ¢ =x, viz.,
sin Axw =0. (53)
Associated eigenvalues with integrable stresses are

A=0,1,2, .. . (54)
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The first of these continues to correspond to a rigid body displacement field. Since the
other eigenvalues are separated by integers, we have the situation alluded to in Section
2 wherein coefficient matrices for assembling further terms in eigenfunction expansions
are themselves singular. To overcome this difficulty, we need to develop auxiliary
fields to those of (15), (16); this is done by successive differentiation of the expressions in
(15), (16) with respect to A. Details of the fields so formed are set out in the Appendix.
These fields enable eigenfunction expansions to be constructed. The algebra involved is

somewhat lengthy, but straightforward. The end result as far as the stresses go is:

o, = kug[n(k - 1)1+ c0528)+(3 —k)(20+ sin26)]

—Er(s—x){[ﬂ(z+1<'(1—4x"e+2e2))-12‘l-%]cose
a

—=2(10- /(3 4x"0 + 667 ))- 2, 331-]cosse
L 2a a

- l<—ll’-ll—o-(?m: — 4x'K” - 48(1 - K’)) — =L (K" ~ 9)]sin9
a

-

1R o s - 003+ ) - (" —39)]sin39

—1nr[(4£159(1— x’)- 1—ll]cose + (4£1-‘l(3 +x) - Sﬂ)cos 30
1) a M a

+4x'k—:‘l((x" —~0)sin®+ (x” —39)sir136)]

—Zx'%-g(ln r)?(cos®+3cos 39)}

+ord(u0r2 (In r)3) + ord(ulrz(lnr)z) + ord(u{r2 Inr),




6o = kug[n(k - 1)(1- cos26) + (3 — k}(20 — sin 20)]
+kr(3 - K){[Eﬁ—o(m -3’ - 61{'62) 52u1 +3-1L ](cose ~c0s30)

HK'K"EEQ-G(?) cos6 ~cos 30)

[kuo (9 +4x'x” — 403+ X)) - 3'1-;1(1(” - 9)]Sin9
—[EEQ (Bm+4x'x” - 46(3 +x’)) - ‘l;—l(‘(" - 36)]sin39
+In r[(4 —L@3+x)-3-1 )(cose cos30)

+4x'—:9(3(x" ~8)sin@ - (x” - 38)sin36)]

+61<:'k—!’l1‘10-(1nr)2 (cosB —cos 36)}

+ord(u0r2(lnr)3) + ord(ulr2 (In r)2) +ord(ujr‘lnr),

Tro = —Kug[m(x —1)sin26 + (3 - x)(1- cos 20)]
—kr(3- K){[ 2031+ 4% (k" — 8))—x” al ](cose - cos38)

- 4kuO | )B(COSG 3c0s30)

\ H
- —]%12(6—K’+21c’9(21c"—6))—32—l;1+ﬂ]sin9
a

+1nr[41< ku (x”(cos6 — cos38) —B(cosO — 3 cos 30))

+ ___kuo (10~ 3%’ +2x'8(2x” - 36)) - ‘52% +3 %] sin39
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(55)

(ku°(1+x) ]sm9+( u°(3+1c’)—3——1)sin39]
i a il a

zx'%&(mr)z(sine-ssinse)}

+ord(u0r2 (lnr)3) + ord(ulr2 (In r)z) +ord(ujr®Inr),




asr—0, 0£0<sn/2 Companion displacements are:

u, =u, {cose + -}:—;[n(x —1)(2c0s28 +k — 1)+ 2(3 — x)(sin20 + (x — 1)6)]}
+ord(u0r2 (lnr)z) + ord(u1r2 lnr) +ord(uir”),

(56)

ug = —uo{sin(-) + —;—T—L-[n(x —-1)sin20+(3-x)(1-cos20+(1+ K)lnr)]}

+% + ord(u0r2 (In r)z) +ord(uyr? Inr) + ord(ujr?),

as r—0, 0<6<mn/2. In (55), (56), ug,uy,uj are arbitrary displacements in the x-

direction, a is now any normalizing length, and k,x’,x” 4re given by:
k=k/n(l+x), ¥ =B-x)1+x)/8, x”"=n(5-x)/2(3-%) (57)

These fields may be verified directly by substituting them into the governing field
equations and the boundary conditions (52). Performing this check shows that the
fields in (55), (56) in fact meet all of these requirements. Clearly, too, the stresses of (55)
are also free from any singularities.

As our final example we consider the stress intensification that can occur within
the microstructure of titanium aluminide alloys. For the TiAl-base lamellar alloy
designated as K5 in Larsen et al. [11], junctions of phases with different orientations are
not unusual (see Figure 1 (b) in [11]). Such a feature is sketched in Fig. 6d. Herein the
different alignments of the anisotropic phases effectively presents different moduli to
the interfaces involved when response is in the elastic regime. In Fig. 6d, we have
simply designated these different moduli as p;,v; (i = 1, 2, 3) for each of the three

phases included in our example. In reality the situation is more complex than this, but
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this simplified approach serves to demonstrate the differences between response with
and without cohesive laws.

Classical boundary conditions for three distinct elastic materials sharing three
interfaces assume continuity of stresses and displacements at an interface, i.e., that the
materials are perfectly bonded to one another. For the geometry and coordinates of Fig.

6d, these conditions may be expressed as:

(58)

for 0<r<eo, with companion matching conditions on 6=¢;,0; +¢,. In (58), 8 =0*
denotes the limit 6 — 0,8 >0, while 6 =0~ denotes the limit 6 - 0,6 < 0. Unfortunately
no full asymptotic analysis of such a trimaterial junction is available in the literature.
However, by considering some limiting cases, we can approximately gauge the range of
possible singular behavior. To this end, set p; =p,, v =1, = V3, then consider the

two limits

H3/H1—0, p3/pg—ee. - (59)
For the first, ;3 vanishing lets the edges of the combined p; —p1, wedge approach being
“stress-free”. Thus from Williams [2], if ¢; +¢, > =, we have possible singular response

of the form

6=01/r"") as r—0, 1/2<i<l (60)
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For the second, n3 becoming absolutely rigid renders the edges of the combined p; —p,
wedge “clamped”, and again from Williams [2], if ¢, + ¢, > upper value of ¢ in (30), we
have singular behavior of the type indicated in (60). Note, though, that the precise
values of A entailed, while falling within the range given in (60), are not generally equal
for these two cases. In between the 5 of (59), we have the instance of p; =, for which
there is no singularity. Hence, in all, we can expect singular response with classical
boundary conditions for the trimaterial junction depicted in Fig. 6d to vary from being
as strong as the inverse-square-root singularity of the classical crack, to being
nonsingular, depending upon material properties.

Now we introduce cohesive laws on the interface. That is, we take
Og = kUQ, Tro = k’ur on 0= 0, (61)

for 0<r <eo, with analogous conditions on 8; =¢;, ¢;+0,. Herein ug,u, are total
displacements measured across the interface. Thus, in the light of our earlier result that
thesé conditions are equivalent to stress-free ones, we in essence have three stress-free

wedges so far as singularities go. Provided each of these “wedges” has a proud corner,
ie., ¢; <m, i=1,2,3, then the response is nonsingular - recall (28), (29).t Moreover, this

result holds irrespective of the values of material constants.

Concluding remarks

The examples of Section 4 represent four demonstrations of configurations which
promote singular stresses when treated with classical boundary conditions, yet which
are nonsingular when cohesive stress-separation laws are introduced. Other examples

exist. Accordingly, since singular stresses are rubbish physically, the introduction of

T In the event that one or more of the “wedges” has a reentrant corner, the configuration can still be
rendered singularity free by the introduction of cohesive conditions within such wedges on rays upon
which it is physically appropriate to entertain failure (cf., the earlier reentrant corner example).
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cohesive boundary conditions would appear to offer a means of significantly improving
modelling in solid mechanics.

The underlying reasons for this alleviation of singular behavior may be described
as follows. Cohesive stress-separation laws are fundamental to continuum mechanics
in that they represent the solid state physics at the atomic/molecular level which
ultimately leads to the constitutive relations for the continuum. As a consequence,
when boundaries in the continuum approach one another to within the distances over
which the stress-separation laws are active, consistent modelling requires the
introduction of cohesive stress-separation laws in the boundary conditions. Such is the
case for the crack flanks of the mathematically sharp crack. Not to insert cohesive
conditions on these crack flanks is, in effect, setting the stiffness in the cohesive law to
zero there. This realizes an abrupt discontinuity in the effective stiffness from that
taken ahead of the crack, and it is this nonphysical discontinuity which in turn produces
singular stresses. However, merely introducing cohesive conditions on the crack flanks
and taking, for example, symmetry conditions ahead of the crack (in essence as in
Barenblatt [4]) also represents the introduction of a discontinuity in cohesive law
stiffness. This is because, when the transverse displacement ahead of the crack is set to
zero in the symmetry conditions, the stiffness is effectively being taken as infinite, in
contrast to its finite value on the crack flanks. Again such a nonphysical discontinuity
produces singular response. Only when a cohesive law is introduced consistently along
the crack plane (as in Fig. 2) are such discontinuities avoided and nonsingular stresses
result. The same sort of argument is directly applicable to the reentrant corner example
treated herein.

In general, the removal of singular stresses stems from the consistent employment
of cohesive stress-separation laws as boundary conditions. This consistency must exist
between the cohesive stress-separation law and the constitutive relations of the

continuum, as well as within the cohesive boundary conditions themselves.
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Appendix

Herein we furnish details of the auxiliary fields needed for the construction of
eigenfunctions for the epoxy-steel butt joint. The first of these stress and displacement
fields follow from differentiation of (15) and (16), respectively, once with respect to A.
This gives, for the stresses,

o, = -1 {AInr{(A - 3)(Fcos(A —1)0 + bsin(A - 1)8) + Tcos(A +1)8 + d sin(A +1)6]
+AB[(A — 3)(-asin(A —1)8 + beos(A — 1)8) — Esin(A + 1)8 + d cos(A +1)8]
+2A —3)(a cos(A — 1) + bsin(A — 1)8) + Ecos(A + 1) + d sin(A + 1)6},

6 =r* A Inr[(A +1)(@acos(h —1)0+ bsin(A —1)8)+ccos(A +1)8 + d sin(A +1)6]
+MB[(A + 1)(-asin(A —1)0 + b cos(A — 1)8) — Tsin(A +1)8 + d cos(A + 1)6]
+(2A +1)(acos(A —1)8 + bsin(A —1)8) + T cos(A +1)6 + d sin(A + 1)6},

T =" HAInr[(A — 1)(asin(h - 1) - beos(A — 1))+ Tsin(A +1)8 — d cos(A + 1)8]
+AB[(A —1)(acos(A —1)8 + bsin(A —1)8) + Tcos(A +1)8 + d sin(A + 1)8]
+(2A — 1)(@sin(A — 1) — b cos(A — 1)) + Tsin(A +1)8 — d cos(A + 1)8},

in which a,b,¢,d are constants, the bar atop them serving to denote that they need not

be the same as their antecedents, a, b, ¢, d. The corresponding displacements are

— l —— —
u, = ?il_{ln r[(A —x)(@cos(A —1)8 + bsin(A — 1)8) + Scos(A + 1)8 + d sin(A + 1)8]

+B[(A — x)(—asin(A — 1)8 + beos(A —1)8) — €sin(A + 1)6 + d cos(A + 1)8]
+acos(A ~1)8 + bsin(A - 1)8},
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A
ug = -;—g{ln r[(A +x)(@sin(A —1)8 — b cos(A — 1)8) + Tsin(A + 1)8 — d cos(A + 1)8]

+0[(A +x)( cos(A —1)8 + bsin(A —1)8) + Tcos(A + 1) + d sin(A + 1)6]
+asin(A —1)8 - bcos(A - 1)6}.

That these fields in fact satisfy the governing equations, (7), (8), may be verified by
direct substitution. Satisfaction of these field equations, however, has to be the case
since (15), (16) comply with (7), (8) for all A, and (7), (8) do not themselves involve A. It
is of note that these fields contain terms that are distinct from the original ones in
‘Williams [2], and which are not included in the classical solution of Michell (see e.g.
Timoshenko and Goodier [12], p. 133, or even the extended version of Michell’s solution
given in Little [13], on pp. 166, 167).

Further differentiation gives the following stresses

o, = —t* YA(Inr)2[(A - 3)(A cos(h — 1)8 + bsin(A — 1)8) + Ecos( + 1) + dsin(A +1)6]
+2A81Inrf(\ — 3)(—asin(A — 1) + b cos(A — 1)6) — &sin(A + 1) + d cos( + 1)8]
+2Inrf(2A - 3)(a cos(h — 1)8 + bsin(A — 1)) + &cos(A +1)8 + dsin(A +1)6]
+20[(2A — 3)(—asin(A — 1)8+ bcos(A — 1)8) — &sin(A +1)6 + d cos(A + 1)6]
—A02[(A - 3)(Acos(A—-1)8 + bsin(A —1)0)+ &cos(A +1)6 + dsin(A +1)0]
+2(& cos(A — )0 + bsin(A - 1)8)},

Cg = M (nr)? [ + 1)@ cos(A - 1)B + Bsin(?\. -1)8)+ccos(A +1)0 + asin()u +1)8]
208 Inrf(A + 1)(-asin(A — 1)8 + b cos(h — 1)8) — &sin(A + 1)8 + d cos(A + 1)6]
+2Inr[(2A +1)(acos(A — 1)8 + bsin(A — 1)8) + &cos(A + 1) + dsin(A + 1)6]
+20[(2\ + 1)(-a sin(A — 1)8 + b cos(A — 1)8) — Esin(A + 1)8 + d cos(A + 1)6]
~A02[(A + 1)(a cos(A — 1)8 + bsin(h — 1)8) + &cos(A +1)0 + dsin(A + 1)9]'
+2(&cos(A — 1) + bsin(A —1)0)},
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Tro = £ (MInr)?[(A ~ 1)(asin(A ~ 1)8 — b cos(h — 1)8) + &sin(h +1)8 — d cos(h + 1)0]
+2A8Inr[(A - 1)(Acos(A — 1)8 + bsin(A — 1)) + Ecos(A +1)8 + dsin(A + 1)9]
+2Inr{(2A - 1)(asin(A —1)8 - bcos(A — 1)8) + &sin(A + 1)8 — d cos(A + 1)6]
+26[(2A - 1)(& cos(h — 1)0 + bsin(A — 1)8) + Ecos(A + 1) + dsin(h + 1)8)]
—A0%[(A —1)(@sin(A ~ 1)8 ~ bcos(A —1)8) + &sin(A +1)8 — d cos(h +1)6]
+2(asin(A —1)0 - beos(A —1)0)},

in which 3,b,&,d are also independent constants. The associated displacements are

A ~
u, = 'Tru-{(lm)2 [(A — )& cos(h 1)+ bsin(A — 1)8) + &cos(A +1)8 + d sin(A +1)8]

+201Inr[(A - x)(-asin(A — 1)8 + bcos(A —1)8) — &sin(A +1)8 + d cos(A +1)6]
+2Inr[dcos(A —1)8 + bsin(A — 1)8] + 26[-4sin(A — 1) + b cos(A —1)6]
—6%[(A — k)& cos(h ~1)8 + bsin(A — 1)8) + Ecos(A + 1)@ + dsin(A + 1),

ug = -;—:{(ln r)2[(A + x)(asin(A - 1)0 — bcos(h —1)8) + &sin(A + 1)6 —dcos(h + 1)0]

+20Inr[(A + x)(acos(h ~1)8 + bsin(A — 1)8) + Ecos(h +1)8 + d sin(A + 1)8]
+2Inr[asin(A —1)8 — b cos(A — 1)8] + 26[& cos(A — 1)8 + bsin(h ~ 1)6]
~6%[(\+x)(asin(A — 1)8 — beos(h — 1)8) + &sin(A +1)8 — d cos(A + 1)8]).

Again these fields may be verified by direct substitution in (7), (8). The foregoing
auxiliary fields suffice for the construction of the eigenfunctions up to the terms
explicitly given in Section 4; higher order terms require further auxiliary fields which

can be generated by yet further differentiation.



